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ABSTRACT

In this work, we apply our recently proposed sparse represen-
tations based speech recognition system on the small vocabulary
track of the 2nd ‘CHiME’ Speech Separation and Recognition Chal-
lenge. This system uses exemplars of different length to approxi-
mate noisy speech segments as a linear combination of the speech
and noise exemplars with sparse weights. The exemplars are labeled
speech segments extracted from the training data, each represent-
ing half words and they are organized in multiple dictionaries based
on their class and length. A reconstruction error-based decoding is
adopted to find the best matching class sequence. After the initial
experiments on AURORA-2, we further apply our system on the
CHIME data which is a more challenging task addressing not only
non-stationary noise but also reverberation. Moreover, the structure
of the CHIME data allows speaker-dependent acoustic modeling and
sampling noise segments from the immediate acoustic context of the
target utterances. Using speaker-dependent dictionary sets, several
recognition experiments are conducted on the development and test
sets to evaluate the system performance with different kinds of noise
dictionaries. These experiments show that combined noise dictio-
naries containing noise exemplars extracted from both the immedi-
ate acoustic context of the test utterances and noise-only segments
in the training data provide better recognition accuracies compared
to fixed and adaptive dictionaries.

Index Terms— Exemplar-based recognition, sparse representa-
tions, non-negative sparse coding, multiple dictionaries

1. INTRODUCTION

The performance of automatic speech recognizers is reduced by non-
stationary noise and reverberation in everyday applications. The de-
generation of the spectro-temporal structure of speech signals due to
reverberation highly depends on the characteristics of the enclosed
acoustic space and the location of the speaker and recording device.
Several front end approaches, e.g. linear filtering, feature and spec-
trum enhancement, and back end approaches, e.g. hidden Markov
models (HMM) adaptation and acoustic context-dependent likeli-
hood evaluation, have been proposed to mitigate the adverse effect
of reverberation on the speech recognizers [1].

Considerable amount of research is devoted to tackle the re-
duced recognition accuracies due to non-stationary noise resulting in
a number of approaches which can mainly be classified under robust
feature extraction [2], signal and feature enhancement [3], model
compensation [4] and missing data techniques [5, 6, 7]. These tech-
niques are used together with HMM-based speech recognizers which
are known to perform poorly in case of noise due to mismatches be-
tween the training and testing conditions.

As an alternative to HMM-based systems, there is an emerging
interest in exemplar-based approaches, and several exemplar-based

sparse representations (SR) techniques have been proposed in the
last years for feature extraction [8], speech enhancement [9] and
noise-robust speech recognition [10, 11, 12] tasks. These approaches
model the acoustics using fixed length exemplars which are labeled
speech and noise segments from the training corpus and stored in
a single overcomplete dictionary. The noisy speech segments are
jointly approximated as a sparse linear combination of these speech
and noise exemplars with exemplar weights obtained by solving a
regularized convex optimization problem. Enforcing sparsity results
in only a very few exemplars with non-zero weights. Consequently, a
realistic approximation of noisy speech segments are obtained with-
out overfitting. The obtained weights mapped to HMM state likeli-
hoods [10] and the noisy speech is decoded by applying the Viterbi
algorithm.

We have recently proposed an alternative SR-based recognition
system which uses different length exemplars organized in separate
dictionaries based on their length and class (the associated speech
unit) [13]. The input speech segments are approximated as a linear
combination of the exemplars in each dictionary. Compared to a sys-
tem using fixed-length exemplars stored in a single dictionary, using
separate dictionaries for each class provides better classification as
input speech segments are approximated as a combination of exem-
plars belonging to the same class only. Moreover, each exemplar is
associated with a single speech unit and the natural duration distribu-
tion of each speech unit in the training data is preserved yielding ex-
emplars of different lengths. A reconstruction error-based decoding
is adopted, hence the system is capable of decoding unseen speech.
Considering the sparse representation model using different length
exemplars associated with a single class and the reconstruction error-
based back end, this approach combines two exemplar-based speech
recognition frameworks, i.e. exemplar matching-based recognition
techniques [14, 15] and the aforementioned SR-based systems using
a fixed length dictionary.

As an extension to the system described in [13], we performed
noisy digit recognition using dictionaries which contain both speech
and noise exemplars [16]. This noise-robust recognition system pro-
vided promising results on the AURORA-2 database [17] which con-
tains clean and noisy digit utterances.

In this paper, we investigate the performance of this novel SR-
based technique on the small vocabulary track of the 2nd ‘CHiME’
Speech Separation and Recognition Challenge. The provided data
contains utterances recorded in a noisy living room and corrupted
by both noise and reverberation. This recognition task is more chal-
lenging than the previous one performed on AURORA-2, due to the
highly non-stationary room noise and the impact of reverberation on
the spectro-temporal structure of speech. Clean, reverberated and
noisy recordings from several speakers are provided in the train-
ing data which allow speaker-dependent acoustic modeling. Fur-
thermore, the target utterances are provided both in isolated and
embedded forms, the latter revealing useful information about the
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immediate acoustic context of each utterance. This information al-
lows ’noise sniffing’ during the recognition, i.e. on-the-fly extraction
of noise exemplars that lie temporally close to the target utterances
[18, 19]. We have compared the performance of our system using
fixed and adaptive noise dictionaries which use noise exemplars ex-
tracted from the embedded training data and from the neighborhood
of every target utterance respectively. A third kind of noise dictio-
nary which combines exemplars from fixed and adaptive dictionaries
is also evaluated.

The rest of the paper is organized as follows. The exemplar-
based sparse representations system using multiple dictionaries is
explained in Section 2. The evaluation setup and implementation
details are discussed in Section 3. Section 4 presents the recognition
results and comments on the system performance. In Section 5, the
conclusions and thoughts for future work are discussed.

2. SPARSE REPRESENTATIONS WITH MULTIPLE
LENGTH EXEMPLARS

2.1. Noisy speech model

The noise-robust recognizer described in [16] models the noisy
speech segments as a sparse linear combination of speech and noise
exemplars that are stored in multiple dictionaries. Speech exem-
plars spanning multiple frames are reshaped into a single vector and
stored in the columns of a speech dictionary Sc,l: one for each class
c and each length l. Each dictionary is of dimensionality Dl ⇥Nc,l

where D is the number of Mel frequency bands in a frame and Nc,l

is the number of available speech exemplars of length l and class c.
Similarly, a single noise dictionary Nl for each length l is formed by
reshaping the noise exemplars. Each speech dictionary is concate-
nated with the noise dictionary of the same length to form a single
dictionary Ac,l = [Sc,l Nl] of dimensionality Dl ⇥ Mc,l where
Mc,l is the total number of available speech and noise exemplars.
For any class c, a reshaped noisy speech vector yl of length Dl is ex-
pressed as a linear combination of the exemplars with non-negative
weights:

yl ⇡
Mc,lX

m=1

x

m
c,la

m
c,l = Ac,lxc,l s.t. x

m
c,l � 0 (1)

where xc,l is an Mc,l-dimensional sparse weight vector. A sparse
weight vector implies that the noisy speech is approximated by a
few exemplars from the speech and/or noise dictionaries.

2.2. Obtaining the exemplar weights

The exemplar weights are obtained by minimizing the cost function,

d(yl,Ac,lxc,l) +

Mc,lX

m=1

x

m
c,l⇤m s.t. x

m
c,l � 0 (2)

where ⇤ is an Mc,l-dimensional vector which contains non-negative
values and controls how sparse the resulting vector x is. Defining ⇤

as a vector, the amount of sparsity enforced on different types of ex-
emplars can be adjusted. The first term is the divergence between
the noisy speech vector and its approximation. The second term is a
regularization term which penalizes the l1-norm of the weight vec-
tor to produce a sparse solution. The generalized Kullback-Leibler
divergence (KLD) is used for d:

d(y, ŷ) =

KX

k=1

yk log

yk

ŷk
� yk + ŷk (3)

The regularized convex optimization problem can be solved by
applying non-negative sparse coding (NSC). For NSC, the multi-
plicative update rule to minimize the cost function (2) is derived in
[10] and is given by

xc,l  xc,l ✓ (A

T
c,l(yl ◆ (Ac,lxc,l))) ◆ (A

T
c,l1 + ⇤) (4)

with ✓ and ◆ denoting element-wise multiplication and division re-
spectively. 1 is a Dl-dimensional vector with all elements equal to
unity. Applying this update rule iteratively, the weight vector be-
comes sparser and the reconstruction error between the noisy speech
vector and its approximation decreases monotonically.

2.3. Decoding the noisy speech

The first term of Equation (2) expresses the reconstruction error be-
tween a noisy speech segment of length l and a class c. Every noisy
speech segment of each available exemplar length is approximated as
a linear combination of exemplars. This is achieved by applying the
sliding window approach [10] to the noisy utterance for each avail-
able exemplar length and iteratively applying Equation (4) using the
dictionaries containing exemplars of the corresponding length. Af-
ter a fixed number of iterations, the reconstruction error is calculated.
As the label of each dictionary is known, decoding is performed by
applying dynamic programming (taking the grammar into account)
to find the class sequence that minimizes the reconstruction error.

3. EXPERIMENTAL SETUP AND IMPLEMENTATION
DETAILS

3.1. Database

The small vocabulary track of the 2nd ‘CHiME’ Speech Separation
and Recognition Challenge [20] addresses the problem of recogniz-
ing commands in a noisy living room. The clean utterances are
taken from the GRID corpus [21] which contains utterances from
34 speakers reading 6-word sequences of the form command-color-
preposition-letter-digit-adverb. There are 25 different letters, 10 dif-
ferent digits and 4 different alternatives for each of the other classes.
The recognition accuracy of a system is calculated based on the cor-
rectly recognized letter and digit keywords.

The clean utterances are artificially reverberated using binaural
room impulse responses which include the speaker head movement
effects. Then, they are mixed with binaural recordings of genuine
room noise at SNR levels of 9, 6, 3, 0 ,-3 and -6 dB. The training
set contains 500 utterances per speaker (17,000 utterances in total)
with clean, reverberated and noisy versions. Noisy utterances are
provided both in isolated or embedded form. Embedded recordings
contain 5 seconds of background noise before and after the target ut-
terance. The development and test sets contain 600 utterances from
all speakers at each SNR level (3600 utterances in total for each set)
both in isolated and embedded from. The immediate noise context
of the target utterances are available in the embedded recordings.
The development set also contains 600 noise-free reverberated utter-
ances. All data has a sampling frequency of 16 kHz.

3.2. Exemplar extraction and dictionary creation

The exemplars and noisy speech segments are represented as Mel-
scaled magnitude spectral features extracted with a 26 channel Mel-
scaled filter bank (D = 26). The frame length is 25 ms and the frame
shift is 10 ms. Binaural data is averaged in the spectral domain to
obtain 26-dimensional feature vectors.
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Fig. 1: Total number of speech exemplars for each speaker

The exemplars are extracted from the reverberated utterances
in the training set according to the state-based segmentations ob-
tained using the clean acoustic models provided in the toolkit. Ex-
emplars belonging to each speaker are organized in separate dictio-
nary sets for speaker-dependent modeling yielding 34 different dic-
tionary sets. The minimum and maximum exemplar lengths are 2
and 40 frames respectively. Exemplars longer than 40 frames are
omitted to limit the number of dictionaries. The usage of very short
exemplars is viable due to the existence of a strict grammar and they
are indeed observed to be useful during the recognition. Exemplars
representing full words turned out to provide poor acoustic model-
ing in terms of generalizability resulting in a high error rate. Half
word exemplars seemed to generalize sufficiently to unseen data un-
der the condition of applying so-called prewarping, i.e. removing a
small number of frames, except the very first and last frame, from an
exemplar of length l to obtain shorter exemplars of length lnew < l.
Due to the high number of alternatives and hence the small number
of exemplars per word, speaker-dependent modeling of letters re-
sults in low recognition accuracies even after applying prewarping.
Hence, letter exemplars from all speakers are used in all 34 dictio-
nary sets. Dictionary sizes vary with class, but are limited to 200.
The total number of speech exemplars for each speaker that are used
during the recognition is given in Figure 1.

The silences between the words are assumed to be negligible,
hence, dictionaries representing a silence class are not used. This
comes with several advantages as the reconstruction error scores ob-
tained using silence dictionaries have to be compensated [16]. How-
ever, the isolated utterances in the training, development and test sets
contain a different number of silence frames in the beginning of the
utterances. To overcome the problems that may occur during the
decoding, the number of silence frames in the beginning of the re-
verberated training data is limited to 10 frames while extracting the
exemplars. Furthermore, during the recognition, the decoding is re-
peated 5 times each time omitting 5 frames from the beginning. The
class sequence yielding the minimum reconstruction error per frame
is then chosen to be the recognition output.

3.3. Noise dictionaries

We used three different noise dictionaries during the experiments,
i.e. fixed, adaptive and finally a combination of these two noise dic-

Table 1: Recognition accuracies obtained on the development and
test sets. The baseline results are obtained using the acoustic models
trained on noisy data.

(a) Development Set

SNR(dB) -6 -3 0 3 6 9
Baseline 49.67 57.92 67.83 73.67 80.75 82.67

Fixed 50.42 55.42 66.33 77.58 82.42 88.25
Adaptive 54.58 61.33 70.75 80.83 86.00 90.00

Combined 57.17 63.08 71.42 80.08 85.17 90.00

(b) Test Set

SNR(dB) -6 -3 0 3 6 9
Baseline 49.33 58.67 67.50 75.08 78.83 82.92

Fixed 49.25 54.58 65.67 75.42 82.67 87.58
Adaptive 52.08 61.75 71.83 79.75 85.08 89.42

Combined 55.92 61.92 72.83 79.75 84.33 89.75

tionaries. Fixed noise dictionaries contain noise exemplars which
are extracted from the embedded recordings in the training set. Since
there are large amounts of noise segments available in the embedded
training data, only the segments with high energy are selected ac-
cording to an l1-norm based criterion in order to eliminate silences.
After a collection of noise exemplars for each available speech exem-
plar length is obtained, 200 noise exemplars are randomly selected
and concatenated to the speech dictionaries of the corresponding
length.

Adaptive dictionaries contain 200 noise exemplars that are ex-
tracted from the neighborhood of each target utterance in both di-
rections until the frames belonging to other target utterances. In
this way, the mismatch between the actual noise segments corrupting
the target utterance and the noise exemplars in the dictionary is re-
duced [19]. On the other hand, only sampling noise segments from
the neighborhood of the target utterance may limit the diversity of
spectrographic content of the noise exemplars. In case of highly
non-stationary noise, having a more spectrally diverse noise dictio-
nary might give better separation. Therefore, we use a third kind
of dictionary which contains noise exemplars randomly taken from
both fixed and adaptive dictionaries. The combined noise dictionar-
ies contain 50 noise exemplars from the fixed dictionaries and 150
noise exemplars from the adaptive dictionaries.

3.4. Implementation details

The whole system is implemented in MATLAB and we used GPUs
to accelerate the evaluation of Equation (4). The multiplicative up-
date rule is iterated 50 times to find the exemplar weights. Elements
of ⇤ corresponding to speech exemplars are set to 0.45, and the ones
corresponding to noise exemplars are set to 0.3. The l2-norm of dic-
tionary columns and reshaped noisy speech vectors are normalized
to unity.

4. RESULTS

We conducted recognition experiments on the development and test
data to evaluate the recognition accuracies using the different noise
dictionaries discussed in Section 3.3. The baseline recognition accu-
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racies provided at the CHIME website1 are obtained using a GMM-
based speaker-dependent speech recognizer trained on noisy data.
The recognition accuracies obtained using fixed, adaptive and com-
bined noise dictionaries are given in Table 1. The best results at each
SNR level are given in bold.

The best recognition accuracies, especially at lower SNR levels,
are obtained using the combined noise dictionaries which contains
noise exemplars from both fixed and adaptive dictionaries. At SNR
level of -6 dB, the recognition accuracy obtained on the test data us-
ing the combined noise dictionaries is 55.92% compared to 49.25%
and 52.08% of the fixed and adaptive noise dictionaries respectively.
This significant improvement is mainly due to the limited number of
noise exemplars available in the dictionaries. Using only 200 noise
exemplars, a noise dictionary containing exemplars with both more
diverse spectrographic representations and noise samples from the
preceding and following segments of the target utterances provide
more effective noise modeling. At higher SNR levels, the adaptive
and combined dictionaries provide comparable results.

At all SNR levels, the system using fixed noise dictionaries per-
form worse than the others which is consistent with the previously
reported results. The main reason of these inferior results is the
mismatch between the actual noise frames and noise exemplars ex-
tracted from the training data due to the highly non-stationary noise.
Using adaptive noise dictionaries, which contain noise exemplars
that are extracted from the noise segments next to the target utter-
ance, results in a more accurate recognition compared to the fixed
noise dictionaries.

The overall performance of the proposed system, which is
slightly better than the challenge baseline, mainly suffers from the
limited noise modeling. The computational restrictions on using
more noise exemplars can be removed by designing an efficient im-
plementation of the system with reduced computational complexity.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have evaluated the performance of a sparse
representations-based speech recognition system using multiple
length exemplars on the small vocabulary track of the 2nd ‘CHiME’
Speech Separation and Recognition Challenge. The recognition is
performed using half word exemplars organized in separate dictio-
naries on the basis of their length and class. Moreover, for each
speaker, a unique dictionary set containing exemplars belonging to
that speaker is used. The impact of using fixed, adaptive and com-
bined noise dictionaries on the recognition accuracy is investigated
during the experiments. The combined noise dictionaries which
contains noise exemplars from both the neighborhood of the target
utterance and a global noise exemplar collection have been shown to
provide the best recognition accuracies at lower SNR levels. Consid-
ering the limited noise modeling due to computational restrictions,
the combined noise dictionaries are more effective than adaptive
dictionaries due to increased spectral diversity of noise exemplars
and providing better noise modeling than fixed dictionaries since
they have noise samples from the immediate acoustic context of
the target utterances. The recognition accuracies obtained using the
combined noise dictionaries have shown the feasibility of this novel
noise-robust speech recognition technique.

Using a few hundreds of noise exemplars compared to the thou-
sands of the techniques using fixed length exemplars organized in
a single dictionary yields a lower recognition accuracy especially at

1http://spandh.dcs.shef.ac.uk/chime_challenge/
chime2_task1.html

lower SNR levels. There are several ways to reduce the computa-
tional limitations on the noise modeling. Firstly, multiplicative up-
date iterations, which are the computational bottleneck of the whole
system, can be efficiently evaluated by a designated implementation
of speech and noise dictionaries. Another approach is to use a shared
noise dictionary with the speech dictionaries of the same length. Fi-
nally, choosing the most informative frequency bands in an exemplar
results in a reduced dictionary size. Experimenting with such effi-
cient implementations remains as a future work.
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